1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
//! Streams
//!
//! This module contains a number of functions for working with `Stream`s,
//! including the `StreamExt` trait which adds methods to `Stream` types.

use crate::future::{assert_future, Either};
use crate::stream::assert_stream;
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use core::pin::Pin;
#[cfg(feature = "sink")]
use futures_core::stream::TryStream;
#[cfg(feature = "alloc")]
use futures_core::stream::{BoxStream, LocalBoxStream};
use futures_core::{
    future::Future,
    stream::{FusedStream, Stream},
    task::{Context, Poll},
};
#[cfg(feature = "sink")]
use futures_sink::Sink;

use crate::fns::{inspect_fn, InspectFn};

mod chain;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::chain::Chain;

mod collect;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::collect::Collect;

mod unzip;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::unzip::Unzip;

mod concat;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::concat::Concat;

mod count;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::count::Count;

mod cycle;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::cycle::Cycle;

mod enumerate;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::enumerate::Enumerate;

mod filter;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::filter::Filter;

mod filter_map;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::filter_map::FilterMap;

mod flatten;

delegate_all!(
    /// Stream for the [`flatten`](StreamExt::flatten) method.
    Flatten<St>(
        flatten::Flatten<St, St::Item>
    ): Debug + Sink + Stream + FusedStream + AccessInner[St, (.)] + New[|x: St| flatten::Flatten::new(x)]
    where St: Stream
);

mod fold;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::fold::Fold;

mod any;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::any::Any;

mod all;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::all::All;

#[cfg(feature = "sink")]
mod forward;

#[cfg(feature = "sink")]
delegate_all!(
    /// Future for the [`forward`](super::StreamExt::forward) method.
    #[cfg_attr(docsrs, doc(cfg(feature = "sink")))]
    Forward<St, Si>(
        forward::Forward<St, Si, St::Ok>
    ): Debug + Future + FusedFuture + New[|x: St, y: Si| forward::Forward::new(x, y)]
    where St: TryStream
);

mod for_each;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::for_each::ForEach;

mod fuse;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::fuse::Fuse;

mod into_future;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::into_future::StreamFuture;

delegate_all!(
    /// Stream for the [`inspect`](StreamExt::inspect) method.
    Inspect<St, F>(
        map::Map<St, InspectFn<F>>
    ): Debug + Sink + Stream + FusedStream + AccessInner[St, (.)] + New[|x: St, f: F| map::Map::new(x, inspect_fn(f))]
);

mod map;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::map::Map;

delegate_all!(
    /// Stream for the [`flat_map`](StreamExt::flat_map) method.
    FlatMap<St, U, F>(
        flatten::Flatten<Map<St, F>, U>
    ): Debug + Sink + Stream + FusedStream + AccessInner[St, (. .)] + New[|x: St, f: F| flatten::Flatten::new(Map::new(x, f))]
);

mod next;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::next::Next;

mod select_next_some;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::select_next_some::SelectNextSome;

mod peek;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::peek::{NextIf, NextIfEq, Peek, PeekMut, Peekable};

mod skip;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::skip::Skip;

mod skip_while;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::skip_while::SkipWhile;

mod take;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::take::Take;

mod take_while;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::take_while::TakeWhile;

mod take_until;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::take_until::TakeUntil;

mod then;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::then::Then;

mod zip;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::zip::Zip;

#[cfg(feature = "alloc")]
mod chunks;
#[cfg(feature = "alloc")]
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::chunks::Chunks;

#[cfg(feature = "alloc")]
mod ready_chunks;
#[cfg(feature = "alloc")]
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::ready_chunks::ReadyChunks;

mod scan;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::scan::Scan;

#[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "alloc")]
mod buffer_unordered;
#[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "alloc")]
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::buffer_unordered::BufferUnordered;

#[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "alloc")]
mod buffered;
#[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "alloc")]
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::buffered::Buffered;

#[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "alloc")]
pub(crate) mod flatten_unordered;

#[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "alloc")]
#[allow(unreachable_pub)]
pub use self::flatten_unordered::FlattenUnordered;

#[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "alloc")]
delegate_all!(
    /// Stream for the [`flat_map_unordered`](StreamExt::flat_map_unordered) method.
    FlatMapUnordered<St, U, F>(
        FlattenUnordered<Map<St, F>>
    ): Debug + Sink + Stream + FusedStream + AccessInner[St, (. .)] + New[|x: St, limit: Option<usize>, f: F| FlattenUnordered::new(Map::new(x, f), limit)]
    where St: Stream, U: Stream, U: Unpin, F: FnMut(St::Item) -> U
);

#[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "alloc")]
mod for_each_concurrent;
#[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "alloc")]
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::for_each_concurrent::ForEachConcurrent;

#[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "sink")]
#[cfg_attr(docsrs, doc(cfg(feature = "sink")))]
#[cfg(feature = "alloc")]
mod split;
#[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "sink")]
#[cfg_attr(docsrs, doc(cfg(feature = "sink")))]
#[cfg(feature = "alloc")]
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::split::{ReuniteError, SplitSink, SplitStream};

#[cfg(feature = "std")]
mod catch_unwind;
#[cfg(feature = "std")]
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::catch_unwind::CatchUnwind;

impl<T: ?Sized> StreamExt for T where T: Stream {}

/// An extension trait for `Stream`s that provides a variety of convenient
/// combinator functions.
pub trait StreamExt: Stream {
    /// Creates a future that resolves to the next item in the stream.
    ///
    /// Note that because `next` doesn't take ownership over the stream,
    /// the [`Stream`] type must be [`Unpin`]. If you want to use `next` with a
    /// [`!Unpin`](Unpin) stream, you'll first have to pin the stream. This can
    /// be done by boxing the stream using [`Box::pin`] or
    /// pinning it to the stack using the `pin_mut!` macro from the `pin_utils`
    /// crate.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let mut stream = stream::iter(1..=3);
    ///
    /// assert_eq!(stream.next().await, Some(1));
    /// assert_eq!(stream.next().await, Some(2));
    /// assert_eq!(stream.next().await, Some(3));
    /// assert_eq!(stream.next().await, None);
    /// # });
    /// ```
    fn next(&mut self) -> Next<'_, Self>
    where
        Self: Unpin,
    {
        assert_future::<Option<Self::Item>, _>(Next::new(self))
    }

    /// Converts this stream into a future of `(next_item, tail_of_stream)`.
    /// If the stream terminates, then the next item is [`None`].
    ///
    /// The returned future can be used to compose streams and futures together
    /// by placing everything into the "world of futures".
    ///
    /// Note that because `into_future` moves the stream, the [`Stream`] type
    /// must be [`Unpin`]. If you want to use `into_future` with a
    /// [`!Unpin`](Unpin) stream, you'll first have to pin the stream. This can
    /// be done by boxing the stream using [`Box::pin`] or
    /// pinning it to the stack using the `pin_mut!` macro from the `pin_utils`
    /// crate.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=3);
    ///
    /// let (item, stream) = stream.into_future().await;
    /// assert_eq!(Some(1), item);
    ///
    /// let (item, stream) = stream.into_future().await;
    /// assert_eq!(Some(2), item);
    /// # });
    /// ```
    fn into_future(self) -> StreamFuture<Self>
    where
        Self: Sized + Unpin,
    {
        assert_future::<(Option<Self::Item>, Self), _>(StreamFuture::new(self))
    }

    /// Maps this stream's items to a different type, returning a new stream of
    /// the resulting type.
    ///
    /// The provided closure is executed over all elements of this stream as
    /// they are made available. It is executed inline with calls to
    /// [`poll_next`](Stream::poll_next).
    ///
    /// Note that this function consumes the stream passed into it and returns a
    /// wrapped version of it, similar to the existing `map` methods in the
    /// standard library.
    ///
    /// See [`StreamExt::then`](Self::then) if you want to use a closure that
    /// returns a future instead of a value.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=3);
    /// let stream = stream.map(|x| x + 3);
    ///
    /// assert_eq!(vec![4, 5, 6], stream.collect::<Vec<_>>().await);
    /// # });
    /// ```
    fn map<T, F>(self, f: F) -> Map<Self, F>
    where
        F: FnMut(Self::Item) -> T,
        Self: Sized,
    {
        assert_stream::<T, _>(Map::new(self, f))
    }

    /// Creates a stream which gives the current iteration count as well as
    /// the next value.
    ///
    /// The stream returned yields pairs `(i, val)`, where `i` is the
    /// current index of iteration and `val` is the value returned by the
    /// stream.
    ///
    /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
    /// different sized integer, the [`zip`](StreamExt::zip) function provides similar
    /// functionality.
    ///
    /// # Overflow Behavior
    ///
    /// The method does no guarding against overflows, so enumerating more than
    /// [`usize::MAX`] elements either produces the wrong result or panics. If
    /// debug assertions are enabled, a panic is guaranteed.
    ///
    /// # Panics
    ///
    /// The returned stream might panic if the to-be-returned index would
    /// overflow a [`usize`].
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(vec!['a', 'b', 'c']);
    ///
    /// let mut stream = stream.enumerate();
    ///
    /// assert_eq!(stream.next().await, Some((0, 'a')));
    /// assert_eq!(stream.next().await, Some((1, 'b')));
    /// assert_eq!(stream.next().await, Some((2, 'c')));
    /// assert_eq!(stream.next().await, None);
    /// # });
    /// ```
    fn enumerate(self) -> Enumerate<Self>
    where
        Self: Sized,
    {
        assert_stream::<(usize, Self::Item), _>(Enumerate::new(self))
    }

    /// Filters the values produced by this stream according to the provided
    /// asynchronous predicate.
    ///
    /// As values of this stream are made available, the provided predicate `f`
    /// will be run against them. If the predicate returns a `Future` which
    /// resolves to `true`, then the stream will yield the value, but if the
    /// predicate returns a `Future` which resolves to `false`, then the value
    /// will be discarded and the next value will be produced.
    ///
    /// Note that this function consumes the stream passed into it and returns a
    /// wrapped version of it, similar to the existing `filter` methods in the
    /// standard library.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future;
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=10);
    /// let events = stream.filter(|x| future::ready(x % 2 == 0));
    ///
    /// assert_eq!(vec![2, 4, 6, 8, 10], events.collect::<Vec<_>>().await);
    /// # });
    /// ```
    fn filter<Fut, F>(self, f: F) -> Filter<Self, Fut, F>
    where
        F: FnMut(&Self::Item) -> Fut,
        Fut: Future<Output = bool>,
        Self: Sized,
    {
        assert_stream::<Self::Item, _>(Filter::new(self, f))
    }

    /// Filters the values produced by this stream while simultaneously mapping
    /// them to a different type according to the provided asynchronous closure.
    ///
    /// As values of this stream are made available, the provided function will
    /// be run on them. If the future returned by the predicate `f` resolves to
    /// [`Some(item)`](Some) then the stream will yield the value `item`, but if
    /// it resolves to [`None`] then the next value will be produced.
    ///
    /// Note that this function consumes the stream passed into it and returns a
    /// wrapped version of it, similar to the existing `filter_map` methods in
    /// the standard library.
    ///
    /// # Examples
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=10);
    /// let events = stream.filter_map(|x| async move {
    ///     if x % 2 == 0 { Some(x + 1) } else { None }
    /// });
    ///
    /// assert_eq!(vec![3, 5, 7, 9, 11], events.collect::<Vec<_>>().await);
    /// # });
    /// ```
    fn filter_map<Fut, T, F>(self, f: F) -> FilterMap<Self, Fut, F>
    where
        F: FnMut(Self::Item) -> Fut,
        Fut: Future<Output = Option<T>>,
        Self: Sized,
    {
        assert_stream::<T, _>(FilterMap::new(self, f))
    }

    /// Computes from this stream's items new items of a different type using
    /// an asynchronous closure.
    ///
    /// The provided closure `f` will be called with an `Item` once a value is
    /// ready, it returns a future which will then be run to completion
    /// to produce the next value on this stream.
    ///
    /// Note that this function consumes the stream passed into it and returns a
    /// wrapped version of it.
    ///
    /// See [`StreamExt::map`](Self::map) if you want to use a closure that
    /// returns a value instead of a future.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=3);
    /// let stream = stream.then(|x| async move { x + 3 });
    ///
    /// assert_eq!(vec![4, 5, 6], stream.collect::<Vec<_>>().await);
    /// # });
    /// ```
    fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F>
    where
        F: FnMut(Self::Item) -> Fut,
        Fut: Future,
        Self: Sized,
    {
        assert_stream::<Fut::Output, _>(Then::new(self, f))
    }

    /// Transforms a stream into a collection, returning a
    /// future representing the result of that computation.
    ///
    /// The returned future will be resolved when the stream terminates.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::channel::mpsc;
    /// use futures::stream::StreamExt;
    /// use std::thread;
    ///
    /// let (tx, rx) = mpsc::unbounded();
    ///
    /// thread::spawn(move || {
    ///     for i in 1..=5 {
    ///         tx.unbounded_send(i).unwrap();
    ///     }
    /// });
    ///
    /// let output = rx.collect::<Vec<i32>>().await;
    /// assert_eq!(output, vec![1, 2, 3, 4, 5]);
    /// # });
    /// ```
    fn collect<C: Default + Extend<Self::Item>>(self) -> Collect<Self, C>
    where
        Self: Sized,
    {
        assert_future::<C, _>(Collect::new(self))
    }

    /// Converts a stream of pairs into a future, which
    /// resolves to pair of containers.
    ///
    /// `unzip()` produces a future, which resolves to two
    /// collections: one from the left elements of the pairs,
    /// and one from the right elements.
    ///
    /// The returned future will be resolved when the stream terminates.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::channel::mpsc;
    /// use futures::stream::StreamExt;
    /// use std::thread;
    ///
    /// let (tx, rx) = mpsc::unbounded();
    ///
    /// thread::spawn(move || {
    ///     tx.unbounded_send((1, 2)).unwrap();
    ///     tx.unbounded_send((3, 4)).unwrap();
    ///     tx.unbounded_send((5, 6)).unwrap();
    /// });
    ///
    /// let (o1, o2): (Vec<_>, Vec<_>) = rx.unzip().await;
    /// assert_eq!(o1, vec![1, 3, 5]);
    /// assert_eq!(o2, vec![2, 4, 6]);
    /// # });
    /// ```
    fn unzip<A, B, FromA, FromB>(self) -> Unzip<Self, FromA, FromB>
    where
        FromA: Default + Extend<A>,
        FromB: Default + Extend<B>,
        Self: Sized + Stream<Item = (A, B)>,
    {
        assert_future::<(FromA, FromB), _>(Unzip::new(self))
    }

    /// Concatenate all items of a stream into a single extendable
    /// destination, returning a future representing the end result.
    ///
    /// This combinator will extend the first item with the contents
    /// of all the subsequent results of the stream. If the stream is
    /// empty, the default value will be returned.
    ///
    /// Works with all collections that implement the
    /// [`Extend`](std::iter::Extend) trait.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::channel::mpsc;
    /// use futures::stream::StreamExt;
    /// use std::thread;
    ///
    /// let (tx, rx) = mpsc::unbounded();
    ///
    /// thread::spawn(move || {
    ///     for i in (0..3).rev() {
    ///         let n = i * 3;
    ///         tx.unbounded_send(vec![n + 1, n + 2, n + 3]).unwrap();
    ///     }
    /// });
    ///
    /// let result = rx.concat().await;
    ///
    /// assert_eq!(result, vec![7, 8, 9, 4, 5, 6, 1, 2, 3]);
    /// # });
    /// ```
    fn concat(self) -> Concat<Self>
    where
        Self: Sized,
        Self::Item: Extend<<<Self as Stream>::Item as IntoIterator>::Item> + IntoIterator + Default,
    {
        assert_future::<Self::Item, _>(Concat::new(self))
    }

    /// Drives the stream to completion, counting the number of items.
    ///
    /// # Overflow Behavior
    ///
    /// The method does no guarding against overflows, so counting elements of a
    /// stream with more than [`usize::MAX`] elements either produces the wrong
    /// result or panics. If debug assertions are enabled, a panic is guaranteed.
    ///
    /// # Panics
    ///
    /// This function might panic if the iterator has more than [`usize::MAX`]
    /// elements.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=10);
    /// let count = stream.count().await;
    ///
    /// assert_eq!(count, 10);
    /// # });
    /// ```
    fn count(self) -> Count<Self>
    where
        Self: Sized,
    {
        assert_future::<usize, _>(Count::new(self))
    }

    /// Repeats a stream endlessly.
    ///
    /// The stream never terminates. Note that you likely want to avoid
    /// usage of `collect` or such on the returned stream as it will exhaust
    /// available memory as it tries to just fill up all RAM.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    /// let a = [1, 2, 3];
    /// let mut s = stream::iter(a.iter()).cycle();
    ///
    /// assert_eq!(s.next().await, Some(&1));
    /// assert_eq!(s.next().await, Some(&2));
    /// assert_eq!(s.next().await, Some(&3));
    /// assert_eq!(s.next().await, Some(&1));
    /// assert_eq!(s.next().await, Some(&2));
    /// assert_eq!(s.next().await, Some(&3));
    /// assert_eq!(s.next().await, Some(&1));
    /// # });
    /// ```
    fn cycle(self) -> Cycle<Self>
    where
        Self: Sized + Clone,
    {
        assert_stream::<Self::Item, _>(Cycle::new(self))
    }

    /// Execute an accumulating asynchronous computation over a stream,
    /// collecting all the values into one final result.
    ///
    /// This combinator will accumulate all values returned by this stream
    /// according to the closure provided. The initial state is also provided to
    /// this method and then is returned again by each execution of the closure.
    /// Once the entire stream has been exhausted the returned future will
    /// resolve to this value.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let number_stream = stream::iter(0..6);
    /// let sum = number_stream.fold(0, |acc, x| async move { acc + x });
    /// assert_eq!(sum.await, 15);
    /// # });
    /// ```
    fn fold<T, Fut, F>(self, init: T, f: F) -> Fold<Self, Fut, T, F>
    where
        F: FnMut(T, Self::Item) -> Fut,
        Fut: Future<Output = T>,
        Self: Sized,
    {
        assert_future::<T, _>(Fold::new(self, f, init))
    }

    /// Execute predicate over asynchronous stream, and return `true` if any element in stream satisfied a predicate.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let number_stream = stream::iter(0..10);
    /// let contain_three = number_stream.any(|i| async move { i == 3 });
    /// assert_eq!(contain_three.await, true);
    /// # });
    /// ```
    fn any<Fut, F>(self, f: F) -> Any<Self, Fut, F>
    where
        F: FnMut(Self::Item) -> Fut,
        Fut: Future<Output = bool>,
        Self: Sized,
    {
        assert_future::<bool, _>(Any::new(self, f))
    }

    /// Execute predicate over asynchronous stream, and return `true` if all element in stream satisfied a predicate.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let number_stream = stream::iter(0..10);
    /// let less_then_twenty = number_stream.all(|i| async move { i < 20 });
    /// assert_eq!(less_then_twenty.await, true);
    /// # });
    /// ```
    fn all<Fut, F>(self, f: F) -> All<Self, Fut, F>
    where
        F: FnMut(Self::Item) -> Fut,
        Fut: Future<Output = bool>,
        Self: Sized,
    {
        assert_future::<bool, _>(All::new(self, f))
    }

    /// Flattens a stream of streams into just one continuous stream.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::channel::mpsc;
    /// use futures::stream::StreamExt;
    /// use std::thread;
    ///
    /// let (tx1, rx1) = mpsc::unbounded();
    /// let (tx2, rx2) = mpsc::unbounded();
    /// let (tx3, rx3) = mpsc::unbounded();
    ///
    /// thread::spawn(move || {
    ///     tx1.unbounded_send(1).unwrap();
    ///     tx1.unbounded_send(2).unwrap();
    /// });
    /// thread::spawn(move || {
    ///     tx2.unbounded_send(3).unwrap();
    ///     tx2.unbounded_send(4).unwrap();
    /// });
    /// thread::spawn(move || {
    ///     tx3.unbounded_send(rx1).unwrap();
    ///     tx3.unbounded_send(rx2).unwrap();
    /// });
    ///
    /// let output = rx3.flatten().collect::<Vec<i32>>().await;
    /// assert_eq!(output, vec![1, 2, 3, 4]);
    /// # });
    /// ```
    fn flatten(self) -> Flatten<Self>
    where
        Self::Item: Stream,
        Self: Sized,
    {
        assert_stream::<<Self::Item as Stream>::Item, _>(Flatten::new(self))
    }

    /// Flattens a stream of streams into just one continuous stream. Polls
    /// inner streams produced by the base stream concurrently.
    ///
    /// The only argument is an optional limit on the number of concurrently
    /// polled streams. If this limit is not `None`, no more than `limit` streams
    /// will be polled at the same time. The `limit` argument is of type
    /// `Into<Option<usize>>`, and so can be provided as either `None`,
    /// `Some(10)`, or just `10`. Note: a limit of zero is interpreted as
    /// no limit at all, and will have the same result as passing in `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::channel::mpsc;
    /// use futures::stream::StreamExt;
    /// use std::thread;
    ///
    /// let (tx1, rx1) = mpsc::unbounded();
    /// let (tx2, rx2) = mpsc::unbounded();
    /// let (tx3, rx3) = mpsc::unbounded();
    ///
    /// thread::spawn(move || {
    ///     tx1.unbounded_send(1).unwrap();
    ///     tx1.unbounded_send(2).unwrap();
    /// });
    /// thread::spawn(move || {
    ///     tx2.unbounded_send(3).unwrap();
    ///     tx2.unbounded_send(4).unwrap();
    /// });
    /// thread::spawn(move || {
    ///     tx3.unbounded_send(rx1).unwrap();
    ///     tx3.unbounded_send(rx2).unwrap();
    /// });
    ///
    /// let mut output = rx3.flatten_unordered(None).collect::<Vec<i32>>().await;
    /// output.sort();
    ///
    /// assert_eq!(output, vec![1, 2, 3, 4]);
    /// # });
    /// ```
    #[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
    #[cfg(feature = "alloc")]
    fn flatten_unordered(self, limit: impl Into<Option<usize>>) -> FlattenUnordered<Self>
    where
        Self::Item: Stream + Unpin,
        Self: Sized,
    {
        assert_stream::<<Self::Item as Stream>::Item, _>(FlattenUnordered::new(self, limit.into()))
    }

    /// Maps a stream like [`StreamExt::map`] but flattens nested `Stream`s.
    ///
    /// [`StreamExt::map`] is very useful, but if it produces a `Stream` instead,
    /// you would have to chain combinators like `.map(f).flatten()` while this
    /// combinator provides ability to write `.flat_map(f)` instead of chaining.
    ///
    /// The provided closure which produces inner streams is executed over all elements
    /// of stream as last inner stream is terminated and next stream item is available.
    ///
    /// Note that this function consumes the stream passed into it and returns a
    /// wrapped version of it, similar to the existing `flat_map` methods in the
    /// standard library.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=3);
    /// let stream = stream.flat_map(|x| stream::iter(vec![x + 3; x]));
    ///
    /// assert_eq!(vec![4, 5, 5, 6, 6, 6], stream.collect::<Vec<_>>().await);
    /// # });
    /// ```
    fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
    where
        F: FnMut(Self::Item) -> U,
        U: Stream,
        Self: Sized,
    {
        assert_stream::<U::Item, _>(FlatMap::new(self, f))
    }

    /// Maps a stream like [`StreamExt::map`] but flattens nested `Stream`s
    /// and polls them concurrently, yielding items in any order, as they made
    /// available.
    ///
    /// [`StreamExt::map`] is very useful, but if it produces `Stream`s
    /// instead, and you need to poll all of them concurrently, you would
    /// have to use something like `for_each_concurrent` and merge values
    /// by hand. This combinator provides ability to collect all values
    /// from concurrently polled streams into one stream.
    ///
    /// The first argument is an optional limit on the number of concurrently
    /// polled streams. If this limit is not `None`, no more than `limit` streams
    /// will be polled at the same time. The `limit` argument is of type
    /// `Into<Option<usize>>`, and so can be provided as either `None`,
    /// `Some(10)`, or just `10`. Note: a limit of zero is interpreted as
    /// no limit at all, and will have the same result as passing in `None`.
    ///
    /// The provided closure which produces inner streams is executed over
    /// all elements of stream as next stream item is available and limit
    /// of concurrently processed streams isn't exceeded.
    ///
    /// Note that this function consumes the stream passed into it and
    /// returns a wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..5);
    /// let stream = stream.flat_map_unordered(1, |x| stream::iter(vec![x; x]));
    /// let mut values = stream.collect::<Vec<_>>().await;
    /// values.sort();
    ///
    /// assert_eq!(vec![1usize, 2, 2, 3, 3, 3, 4, 4, 4, 4], values);
    /// # });
    /// ```
    #[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
    #[cfg(feature = "alloc")]
    fn flat_map_unordered<U, F>(
        self,
        limit: impl Into<Option<usize>>,
        f: F,
    ) -> FlatMapUnordered<Self, U, F>
    where
        U: Stream + Unpin,
        F: FnMut(Self::Item) -> U,
        Self: Sized,
    {
        assert_stream::<U::Item, _>(FlatMapUnordered::new(self, limit.into(), f))
    }

    /// Combinator similar to [`StreamExt::fold`] that holds internal state
    /// and produces a new stream.
    ///
    /// Accepts initial state and closure which will be applied to each element
    /// of the stream until provided closure returns `None`. Once `None` is
    /// returned, stream will be terminated.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future;
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=10);
    ///
    /// let stream = stream.scan(0, |state, x| {
    ///     *state += x;
    ///     future::ready(if *state < 10 { Some(x) } else { None })
    /// });
    ///
    /// assert_eq!(vec![1, 2, 3], stream.collect::<Vec<_>>().await);
    /// # });
    /// ```
    fn scan<S, B, Fut, F>(self, initial_state: S, f: F) -> Scan<Self, S, Fut, F>
    where
        F: FnMut(&mut S, Self::Item) -> Fut,
        Fut: Future<Output = Option<B>>,
        Self: Sized,
    {
        assert_stream::<B, _>(Scan::new(self, initial_state, f))
    }

    /// Skip elements on this stream while the provided asynchronous predicate
    /// resolves to `true`.
    ///
    /// This function, like `Iterator::skip_while`, will skip elements on the
    /// stream until the predicate `f` resolves to `false`. Once one element
    /// returns `false`, all future elements will be returned from the underlying
    /// stream.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future;
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=10);
    ///
    /// let stream = stream.skip_while(|x| future::ready(*x <= 5));
    ///
    /// assert_eq!(vec![6, 7, 8, 9, 10], stream.collect::<Vec<_>>().await);
    /// # });
    /// ```
    fn skip_while<Fut, F>(self, f: F) -> SkipWhile<Self, Fut, F>
    where
        F: FnMut(&Self::Item) -> Fut,
        Fut: Future<Output = bool>,
        Self: Sized,
    {
        assert_stream::<Self::Item, _>(SkipWhile::new(self, f))
    }

    /// Take elements from this stream while the provided asynchronous predicate
    /// resolves to `true`.
    ///
    /// This function, like `Iterator::take_while`, will take elements from the
    /// stream until the predicate `f` resolves to `false`. Once one element
    /// returns `false`, it will always return that the stream is done.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future;
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=10);
    ///
    /// let stream = stream.take_while(|x| future::ready(*x <= 5));
    ///
    /// assert_eq!(vec![1, 2, 3, 4, 5], stream.collect::<Vec<_>>().await);
    /// # });
    /// ```
    fn take_while<Fut, F>(self, f: F) -> TakeWhile<Self, Fut, F>
    where
        F: FnMut(&Self::Item) -> Fut,
        Fut: Future<Output = bool>,
        Self: Sized,
    {
        assert_stream::<Self::Item, _>(TakeWhile::new(self, f))
    }

    /// Take elements from this stream until the provided future resolves.
    ///
    /// This function will take elements from the stream until the provided
    /// stopping future `fut` resolves. Once the `fut` future becomes ready,
    /// this stream combinator will always return that the stream is done.
    ///
    /// The stopping future may return any type. Once the stream is stopped
    /// the result of the stopping future may be accessed with `TakeUntil::take_result()`.
    /// The stream may also be resumed with `TakeUntil::take_future()`.
    /// See the documentation of [`TakeUntil`] for more information.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future;
    /// use futures::stream::{self, StreamExt};
    /// use futures::task::Poll;
    ///
    /// let stream = stream::iter(1..=10);
    ///
    /// let mut i = 0;
    /// let stop_fut = future::poll_fn(|_cx| {
    ///     i += 1;
    ///     if i <= 5 {
    ///         Poll::Pending
    ///     } else {
    ///         Poll::Ready(())
    ///     }
    /// });
    ///
    /// let stream = stream.take_until(stop_fut);
    ///
    /// assert_eq!(vec![1, 2, 3, 4, 5], stream.collect::<Vec<_>>().await);
    /// # });
    /// ```
    fn take_until<Fut>(self, fut: Fut) -> TakeUntil<Self, Fut>
    where
        Fut: Future,
        Self: Sized,
    {
        assert_stream::<Self::Item, _>(TakeUntil::new(self, fut))
    }

    /// Runs this stream to completion, executing the provided asynchronous
    /// closure for each element on the stream.
    ///
    /// The closure provided will be called for each item this stream produces,
    /// yielding a future. That future will then be executed to completion
    /// before moving on to the next item.
    ///
    /// The returned value is a `Future` where the `Output` type is `()`; it is
    /// executed entirely for its side effects.
    ///
    /// To process each item in the stream and produce another stream instead
    /// of a single future, use `then` instead.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future;
    /// use futures::stream::{self, StreamExt};
    ///
    /// let mut x = 0;
    ///
    /// {
    ///     let fut = stream::repeat(1).take(3).for_each(|item| {
    ///         x += item;
    ///         future::ready(())
    ///     });
    ///     fut.await;
    /// }
    ///
    /// assert_eq!(x, 3);
    /// # });
    /// ```
    fn for_each<Fut, F>(self, f: F) -> ForEach<Self, Fut, F>
    where
        F: FnMut(Self::Item) -> Fut,
        Fut: Future<Output = ()>,
        Self: Sized,
    {
        assert_future::<(), _>(ForEach::new(self, f))
    }

    /// Runs this stream to completion, executing the provided asynchronous
    /// closure for each element on the stream concurrently as elements become
    /// available.
    ///
    /// This is similar to [`StreamExt::for_each`], but the futures
    /// produced by the closure are run concurrently (but not in parallel--
    /// this combinator does not introduce any threads).
    ///
    /// The closure provided will be called for each item this stream produces,
    /// yielding a future. That future will then be executed to completion
    /// concurrently with the other futures produced by the closure.
    ///
    /// The first argument is an optional limit on the number of concurrent
    /// futures. If this limit is not `None`, no more than `limit` futures
    /// will be run concurrently. The `limit` argument is of type
    /// `Into<Option<usize>>`, and so can be provided as either `None`,
    /// `Some(10)`, or just `10`. Note: a limit of zero is interpreted as
    /// no limit at all, and will have the same result as passing in `None`.
    ///
    /// This method is only available when the `std` or `alloc` feature of this
    /// library is activated, and it is activated by default.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::channel::oneshot;
    /// use futures::stream::{self, StreamExt};
    ///
    /// let (tx1, rx1) = oneshot::channel();
    /// let (tx2, rx2) = oneshot::channel();
    /// let (tx3, rx3) = oneshot::channel();
    ///
    /// let fut = stream::iter(vec![rx1, rx2, rx3]).for_each_concurrent(
    ///     /* limit */ 2,
    ///     |rx| async move {
    ///         rx.await.unwrap();
    ///     }
    /// );
    /// tx1.send(()).unwrap();
    /// tx2.send(()).unwrap();
    /// tx3.send(()).unwrap();
    /// fut.await;
    /// # })
    /// ```
    #[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
    #[cfg(feature = "alloc")]
    fn for_each_concurrent<Fut, F>(
        self,
        limit: impl Into<Option<usize>>,
        f: F,
    ) -> ForEachConcurrent<Self, Fut, F>
    where
        F: FnMut(Self::Item) -> Fut,
        Fut: Future<Output = ()>,
        Self: Sized,
    {
        assert_future::<(), _>(ForEachConcurrent::new(self, limit.into(), f))
    }

    /// Creates a new stream of at most `n` items of the underlying stream.
    ///
    /// Once `n` items have been yielded from this stream then it will always
    /// return that the stream is done.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=10).take(3);
    ///
    /// assert_eq!(vec![1, 2, 3], stream.collect::<Vec<_>>().await);
    /// # });
    /// ```
    fn take(self, n: usize) -> Take<Self>
    where
        Self: Sized,
    {
        assert_stream::<Self::Item, _>(Take::new(self, n))
    }

    /// Creates a new stream which skips `n` items of the underlying stream.
    ///
    /// Once `n` items have been skipped from this stream then it will always
    /// return the remaining items on this stream.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=10).skip(5);
    ///
    /// assert_eq!(vec![6, 7, 8, 9, 10], stream.collect::<Vec<_>>().await);
    /// # });
    /// ```
    fn skip(self, n: usize) -> Skip<Self>
    where
        Self: Sized,
    {
        assert_stream::<Self::Item, _>(Skip::new(self, n))
    }

    /// Fuse a stream such that [`poll_next`](Stream::poll_next) will never
    /// again be called once it has finished. This method can be used to turn
    /// any `Stream` into a `FusedStream`.
    ///
    /// Normally, once a stream has returned [`None`] from
    /// [`poll_next`](Stream::poll_next) any further calls could exhibit bad
    /// behavior such as block forever, panic, never return, etc. If it is known
    /// that [`poll_next`](Stream::poll_next) may be called after stream
    /// has already finished, then this method can be used to ensure that it has
    /// defined semantics.
    ///
    /// The [`poll_next`](Stream::poll_next) method of a `fuse`d stream
    /// is guaranteed to return [`None`] after the underlying stream has
    /// finished.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::executor::block_on_stream;
    /// use futures::stream::{self, StreamExt};
    /// use futures::task::Poll;
    ///
    /// let mut x = 0;
    /// let stream = stream::poll_fn(|_| {
    ///     x += 1;
    ///     match x {
    ///         0..=2 => Poll::Ready(Some(x)),
    ///         3 => Poll::Ready(None),
    ///         _ => panic!("should not happen")
    ///     }
    /// }).fuse();
    ///
    /// let mut iter = block_on_stream(stream);
    /// assert_eq!(Some(1), iter.next());
    /// assert_eq!(Some(2), iter.next());
    /// assert_eq!(None, iter.next());
    /// assert_eq!(None, iter.next());
    /// // ...
    /// ```
    fn fuse(self) -> Fuse<Self>
    where
        Self: Sized,
    {
        assert_stream::<Self::Item, _>(Fuse::new(self))
    }

    /// Borrows a stream, rather than consuming it.
    ///
    /// This is useful to allow applying stream adaptors while still retaining
    /// ownership of the original stream.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let mut stream = stream::iter(1..5);
    ///
    /// let sum = stream.by_ref()
    ///                 .take(2)
    ///                 .fold(0, |a, b| async move { a + b })
    ///                 .await;
    /// assert_eq!(sum, 3);
    ///
    /// // You can use the stream again
    /// let sum = stream.take(2)
    ///                 .fold(0, |a, b| async move { a + b })
    ///                 .await;
    /// assert_eq!(sum, 7);
    /// # });
    /// ```
    fn by_ref(&mut self) -> &mut Self {
        self
    }

    /// Catches unwinding panics while polling the stream.
    ///
    /// Caught panic (if any) will be the last element of the resulting stream.
    ///
    /// In general, panics within a stream can propagate all the way out to the
    /// task level. This combinator makes it possible to halt unwinding within
    /// the stream itself. It's most commonly used within task executors. This
    /// method should not be used for error handling.
    ///
    /// Note that this method requires the `UnwindSafe` bound from the standard
    /// library. This isn't always applied automatically, and the standard
    /// library provides an `AssertUnwindSafe` wrapper type to apply it
    /// after-the fact. To assist using this method, the [`Stream`] trait is
    /// also implemented for `AssertUnwindSafe<St>` where `St` implements
    /// [`Stream`].
    ///
    /// This method is only available when the `std` feature of this
    /// library is activated, and it is activated by default.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(vec![Some(10), None, Some(11)]);
    /// // Panic on second element
    /// let stream_panicking = stream.map(|o| o.unwrap());
    /// // Collect all the results
    /// let stream = stream_panicking.catch_unwind();
    ///
    /// let results: Vec<Result<i32, _>> = stream.collect().await;
    /// match results[0] {
    ///     Ok(10) => {}
    ///     _ => panic!("unexpected result!"),
    /// }
    /// assert!(results[1].is_err());
    /// assert_eq!(results.len(), 2);
    /// # });
    /// ```
    #[cfg(feature = "std")]
    fn catch_unwind(self) -> CatchUnwind<Self>
    where
        Self: Sized + std::panic::UnwindSafe,
    {
        assert_stream(CatchUnwind::new(self))
    }

    /// Wrap the stream in a Box, pinning it.
    ///
    /// This method is only available when the `std` or `alloc` feature of this
    /// library is activated, and it is activated by default.
    #[cfg(feature = "alloc")]
    fn boxed<'a>(self) -> BoxStream<'a, Self::Item>
    where
        Self: Sized + Send + 'a,
    {
        assert_stream::<Self::Item, _>(Box::pin(self))
    }

    /// Wrap the stream in a Box, pinning it.
    ///
    /// Similar to `boxed`, but without the `Send` requirement.
    ///
    /// This method is only available when the `std` or `alloc` feature of this
    /// library is activated, and it is activated by default.
    #[cfg(feature = "alloc")]
    fn boxed_local<'a>(self) -> LocalBoxStream<'a, Self::Item>
    where
        Self: Sized + 'a,
    {
        assert_stream::<Self::Item, _>(Box::pin(self))
    }

    /// An adaptor for creating a buffered list of pending futures.
    ///
    /// If this stream's item can be converted into a future, then this adaptor
    /// will buffer up to at most `n` futures and then return the outputs in the
    /// same order as the underlying stream. No more than `n` futures will be
    /// buffered at any point in time, and less than `n` may also be buffered
    /// depending on the state of each future.
    ///
    /// The returned stream will be a stream of each future's output.
    ///
    /// This method is only available when the `std` or `alloc` feature of this
    /// library is activated, and it is activated by default.
    #[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
    #[cfg(feature = "alloc")]
    fn buffered(self, n: usize) -> Buffered<Self>
    where
        Self::Item: Future,
        Self: Sized,
    {
        assert_stream::<<Self::Item as Future>::Output, _>(Buffered::new(self, n))
    }

    /// An adaptor for creating a buffered list of pending futures (unordered).
    ///
    /// If this stream's item can be converted into a future, then this adaptor
    /// will buffer up to `n` futures and then return the outputs in the order
    /// in which they complete. No more than `n` futures will be buffered at
    /// any point in time, and less than `n` may also be buffered depending on
    /// the state of each future.
    ///
    /// The returned stream will be a stream of each future's output.
    ///
    /// This method is only available when the `std` or `alloc` feature of this
    /// library is activated, and it is activated by default.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::channel::oneshot;
    /// use futures::stream::{self, StreamExt};
    ///
    /// let (send_one, recv_one) = oneshot::channel();
    /// let (send_two, recv_two) = oneshot::channel();
    ///
    /// let stream_of_futures = stream::iter(vec![recv_one, recv_two]);
    /// let mut buffered = stream_of_futures.buffer_unordered(10);
    ///
    /// send_two.send(2i32)?;
    /// assert_eq!(buffered.next().await, Some(Ok(2i32)));
    ///
    /// send_one.send(1i32)?;
    /// assert_eq!(buffered.next().await, Some(Ok(1i32)));
    ///
    /// assert_eq!(buffered.next().await, None);
    /// # Ok::<(), i32>(()) }).unwrap();
    /// ```
    #[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
    #[cfg(feature = "alloc")]
    fn buffer_unordered(self, n: usize) -> BufferUnordered<Self>
    where
        Self::Item: Future,
        Self: Sized,
    {
        assert_stream::<<Self::Item as Future>::Output, _>(BufferUnordered::new(self, n))
    }

    /// An adapter for zipping two streams together.
    ///
    /// The zipped stream waits for both streams to produce an item, and then
    /// returns that pair. If either stream ends then the zipped stream will
    /// also end.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream1 = stream::iter(1..=3);
    /// let stream2 = stream::iter(5..=10);
    ///
    /// let vec = stream1.zip(stream2)
    ///                  .collect::<Vec<_>>()
    ///                  .await;
    /// assert_eq!(vec![(1, 5), (2, 6), (3, 7)], vec);
    /// # });
    /// ```
    ///
    fn zip<St>(self, other: St) -> Zip<Self, St>
    where
        St: Stream,
        Self: Sized,
    {
        assert_stream::<(Self::Item, St::Item), _>(Zip::new(self, other))
    }

    /// Adapter for chaining two streams.
    ///
    /// The resulting stream emits elements from the first stream, and when
    /// first stream reaches the end, emits the elements from the second stream.
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream1 = stream::iter(vec![Ok(10), Err(false)]);
    /// let stream2 = stream::iter(vec![Err(true), Ok(20)]);
    ///
    /// let stream = stream1.chain(stream2);
    ///
    /// let result: Vec<_> = stream.collect().await;
    /// assert_eq!(result, vec![
    ///     Ok(10),
    ///     Err(false),
    ///     Err(true),
    ///     Ok(20),
    /// ]);
    /// # });
    /// ```
    fn chain<St>(self, other: St) -> Chain<Self, St>
    where
        St: Stream<Item = Self::Item>,
        Self: Sized,
    {
        assert_stream::<Self::Item, _>(Chain::new(self, other))
    }

    /// Creates a new stream which exposes a `peek` method.
    ///
    /// Calling `peek` returns a reference to the next item in the stream.
    fn peekable(self) -> Peekable<Self>
    where
        Self: Sized,
    {
        assert_stream::<Self::Item, _>(Peekable::new(self))
    }

    /// An adaptor for chunking up items of the stream inside a vector.
    ///
    /// This combinator will attempt to pull items from this stream and buffer
    /// them into a local vector. At most `capacity` items will get buffered
    /// before they're yielded from the returned stream.
    ///
    /// Note that the vectors returned from this iterator may not always have
    /// `capacity` elements. If the underlying stream ended and only a partial
    /// vector was created, it'll be returned. Additionally if an error happens
    /// from the underlying stream then the currently buffered items will be
    /// yielded.
    ///
    /// This method is only available when the `std` or `alloc` feature of this
    /// library is activated, and it is activated by default.
    ///
    /// # Panics
    ///
    /// This method will panic if `capacity` is zero.
    #[cfg(feature = "alloc")]
    fn chunks(self, capacity: usize) -> Chunks<Self>
    where
        Self: Sized,
    {
        assert_stream::<Vec<Self::Item>, _>(Chunks::new(self, capacity))
    }

    /// An adaptor for chunking up ready items of the stream inside a vector.
    ///
    /// This combinator will attempt to pull ready items from this stream and
    /// buffer them into a local vector. At most `capacity` items will get
    /// buffered before they're yielded from the returned stream. If underlying
    /// stream returns `Poll::Pending`, and collected chunk is not empty, it will
    /// be immediately returned.
    ///
    /// If the underlying stream ended and only a partial vector was created,
    /// it will be returned.
    ///
    /// This method is only available when the `std` or `alloc` feature of this
    /// library is activated, and it is activated by default.
    ///
    /// # Panics
    ///
    /// This method will panic if `capacity` is zero.
    #[cfg(feature = "alloc")]
    fn ready_chunks(self, capacity: usize) -> ReadyChunks<Self>
    where
        Self: Sized,
    {
        assert_stream::<Vec<Self::Item>, _>(ReadyChunks::new(self, capacity))
    }

    /// A future that completes after the given stream has been fully processed
    /// into the sink and the sink has been flushed and closed.
    ///
    /// This future will drive the stream to keep producing items until it is
    /// exhausted, sending each item to the sink. It will complete once the
    /// stream is exhausted, the sink has received and flushed all items, and
    /// the sink is closed. Note that neither the original stream nor provided
    /// sink will be output by this future. Pass the sink by `Pin<&mut S>`
    /// (for example, via `forward(&mut sink)` inside an `async` fn/block) in
    /// order to preserve access to the `Sink`. If the stream produces an error,
    /// that error will be returned by this future without flushing/closing the sink.
    #[cfg(feature = "sink")]
    #[cfg_attr(docsrs, doc(cfg(feature = "sink")))]
    fn forward<S>(self, sink: S) -> Forward<Self, S>
    where
        S: Sink<Self::Ok, Error = Self::Error>,
        Self: TryStream + Sized,
        // Self: TryStream + Sized + Stream<Item = Result<<Self as TryStream>::Ok, <Self as TryStream>::Error>>,
    {
        // TODO: type mismatch resolving `<Self as futures_core::Stream>::Item == std::result::Result<<Self as futures_core::TryStream>::Ok, <Self as futures_core::TryStream>::Error>`
        // assert_future::<Result<(), Self::Error>, _>(Forward::new(self, sink))
        Forward::new(self, sink)
    }

    /// Splits this `Stream + Sink` object into separate `Sink` and `Stream`
    /// objects.
    ///
    /// This can be useful when you want to split ownership between tasks, or
    /// allow direct interaction between the two objects (e.g. via
    /// `Sink::send_all`).
    ///
    /// This method is only available when the `std` or `alloc` feature of this
    /// library is activated, and it is activated by default.
    #[cfg(feature = "sink")]
    #[cfg_attr(docsrs, doc(cfg(feature = "sink")))]
    #[cfg_attr(target_os = "none", cfg(target_has_atomic = "ptr"))]
    #[cfg(feature = "alloc")]
    fn split<Item>(self) -> (SplitSink<Self, Item>, SplitStream<Self>)
    where
        Self: Sink<Item> + Sized,
    {
        let (sink, stream) = split::split(self);
        (
            crate::sink::assert_sink::<Item, Self::Error, _>(sink),
            assert_stream::<Self::Item, _>(stream),
        )
    }

    /// Do something with each item of this stream, afterwards passing it on.
    ///
    /// This is similar to the `Iterator::inspect` method in the standard
    /// library where it allows easily inspecting each value as it passes
    /// through the stream, for example to debug what's going on.
    fn inspect<F>(self, f: F) -> Inspect<Self, F>
    where
        F: FnMut(&Self::Item),
        Self: Sized,
    {
        assert_stream::<Self::Item, _>(Inspect::new(self, f))
    }

    /// Wrap this stream in an `Either` stream, making it the left-hand variant
    /// of that `Either`.
    ///
    /// This can be used in combination with the `right_stream` method to write `if`
    /// statements that evaluate to different streams in different branches.
    fn left_stream<B>(self) -> Either<Self, B>
    where
        B: Stream<Item = Self::Item>,
        Self: Sized,
    {
        assert_stream::<Self::Item, _>(Either::Left(self))
    }

    /// Wrap this stream in an `Either` stream, making it the right-hand variant
    /// of that `Either`.
    ///
    /// This can be used in combination with the `left_stream` method to write `if`
    /// statements that evaluate to different streams in different branches.
    fn right_stream<B>(self) -> Either<B, Self>
    where
        B: Stream<Item = Self::Item>,
        Self: Sized,
    {
        assert_stream::<Self::Item, _>(Either::Right(self))
    }

    /// A convenience method for calling [`Stream::poll_next`] on [`Unpin`]
    /// stream types.
    fn poll_next_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Option<Self::Item>>
    where
        Self: Unpin,
    {
        Pin::new(self).poll_next(cx)
    }

    /// Returns a [`Future`] that resolves when the next item in this stream is
    /// ready.
    ///
    /// This is similar to the [`next`][StreamExt::next] method, but it won't
    /// resolve to [`None`] if used on an empty [`Stream`]. Instead, the
    /// returned future type will return `true` from
    /// [`FusedFuture::is_terminated`][] when the [`Stream`] is empty, allowing
    /// [`select_next_some`][StreamExt::select_next_some] to be easily used with
    /// the [`select!`] macro.
    ///
    /// If the future is polled after this [`Stream`] is empty it will panic.
    /// Using the future with a [`FusedFuture`][]-aware primitive like the
    /// [`select!`] macro will prevent this.
    ///
    /// [`FusedFuture`]: futures_core::future::FusedFuture
    /// [`FusedFuture::is_terminated`]: futures_core::future::FusedFuture::is_terminated
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::{future, select};
    /// use futures::stream::{StreamExt, FuturesUnordered};
    ///
    /// let mut fut = future::ready(1);
    /// let mut async_tasks = FuturesUnordered::new();
    /// let mut total = 0;
    /// loop {
    ///     select! {
    ///         num = fut => {
    ///             // First, the `ready` future completes.
    ///             total += num;
    ///             // Then we spawn a new task onto `async_tasks`,
    ///             async_tasks.push(async { 5 });
    ///         },
    ///         // On the next iteration of the loop, the task we spawned
    ///         // completes.
    ///         num = async_tasks.select_next_some() => {
    ///             total += num;
    ///         }
    ///         // Finally, both the `ready` future and `async_tasks` have
    ///         // finished, so we enter the `complete` branch.
    ///         complete => break,
    ///     }
    /// }
    /// assert_eq!(total, 6);
    /// # });
    /// ```
    ///
    /// [`select!`]: crate::select
    fn select_next_some(&mut self) -> SelectNextSome<'_, Self>
    where
        Self: Unpin + FusedStream,
    {
        assert_future::<Self::Item, _>(SelectNextSome::new(self))
    }
}